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% Design of robust loss functions

“ Theory of representation learning




Optimal transport in machine learning

® Neasure the discrepancy of probability distributions (statistical inference)

® Q. What kind of divergences are preferred?
® Q. Can we compute accurately and faster?
® Q. What can it be used for?
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Summary in one page

® \\Vhat we do

“ Propose a new (entropic) regularizer to enhance sparsity of optimal transport solution

Solution of Sinkhorn 0 Proposed
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® \What's interesting from practical viewpoint

< Controllable trade-off between sparsity and computational time

® \What's interesting from theoretical viewpoint

< Connection to convex duality and statistical mechanics via Fenchel-Legendre transtform




Introduction | Optimal transport

® Goal: to find an optimal way to transport goods from sources to targets

produce q,
produce aq, h %
produce as,

® | P formulation (Kantorovich's relaxatlon

consume b,

consume b,

\Ell o \Ell

consume b,

inf (D.II) where U(u )= {H e R
IIeU(a,b)

M1 = a. HT1=b}

—

T transport all goods J satisty demand constraints
D;: cost between (i, j) from sources of targets

® Issue: O(n’logn) time complexity @)




Introduction | Regularized optimal transport

® Motivation: to accelerate optimization (by using convex optimization)

® Primal Tormulation [Cuturi, 2013]

inf (D, II) + /1 2 H(Hl-j) where H(n) = zlogz—z (negative Shannon entropy)
IIeU(a,b) iy

2 Sinkhorn algorithm solves the primal by block coordinate descent with O(x?) time &)

® Issue: the regularized solution deviate from the original solution )

% In particular: “sparsity” is lost | LP solution Solution of Sinkhorn
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Cuturi, M. (NeurlPS2013). Sinkhorn distances: Lightspeed computation of optimal transport.



Introduction | Sparsity of transport matrix

® Application of optimal transport: alignment

® txample: matching two different sentence pairs [Swanson et al., 2020]

[Unallocated memory, ubuntu

| have 4 partitions and 106Gb
unallocated.

| try to install Windows on 106Gb Free
Space.

but While installing, | got that 2
partiotions got unallocated.

LHow can | recover them?

result of quick scan with test disk :
and also result of fdisk -l

'How to recover a deleted NTFS partition
with data

| am on Ubuntu 12.04 64-bits |
accidentally deleted a NTFS 255 GB
partition using Gparted, and yes it
contains LOTS of important data.

(Upon realizing the deletion | haven't
\yet created any file-system on it.

So it still shows Unallocated. }

| tried Testdisk, but it shows entire
partitions created from the beginning.

‘This sdb is my secondary drive with
LXubuntu and Kubuntu on it.

And that 255 GB NTFS partition was cross
platform storage drive.

| am currently in sda with Ubuntu and
Win7 in dual boot, which enables

Dense alignment

Sparse alignment is more salient to

Swanson, K., Yu, L., & Lei, T. (ACL2020). Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport.

Sparse alignment

extract meaningful matches




Motivation | New regularizer to balance sparsity/runtime °

| j ) inf (D,II)+4 ) H(IL,
nelllfl(g,b) D10 nelllfl(g,b) D10 ; (M) Helllfl(a,b)< > ; (1)

LP solution .. Solution of Sinkhorn

@ Sparse solution @ Quadratic time
@ Cubic time @ Dense solution
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Formulation | Regularized OT & dual

® Regularized OT (primal)

inf (D, II) + 2 Q(Hij) for a convex regularizer Q: R - R
IIeU(a,b) y

® Regularized OT (dual)

sup — (a,a) — (b, ) — Z Q*( -D; -« —ﬂj) where Q* is Fenchel-Legendre transform
a,ﬂE[R” l]

< By Lagrangian (a, . multipliers) & strong duality
% Note: dual Is unconstrained

® Primal-dual correspondence (inverse link)

Fenchel-Legendre transform
Q*() = sup (mn) — Q(x)

= Primal transport plan II can be obtained from dual variables a, redom(Q)

II, =VQ*(-D; —a;—p;) foralli]




Examples

® (Negative) Shannon entropy

< Reqgularizer Q(x) = A(xlog w — n)
< Inverse link VQ*(n) = exp(n/i)

®-norm

% Reqularizer Q(r) = %nz

% Inverse link VQ*() = + max{0,y)

® Primal-dual correspondence

I = VQ* (- Dy — & - )

II.. —
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Energy
Gibbs kernel / (= cost + multipliers)
D;+a;+p;
exp| —
A
Temperature

(= req. strength)

Dense solution




ldea | Regularizer from alternative (inverse) link function

® I[nstead of a "dense’” inverse link -

I, =

exp ( D;+a;+ ﬂj) Entropy €2(77) <---:- dual =% | Cumulant Q*(»)
A

® Design a ‘sparse’ inverse link : :
V, i (Danskin’s Theorem) V, :

D . +a+p. :
Y : J : :
v v

® [hen, recover an entropy-like function Link VQ(7) <---inverse --» |Inverse link VQ*(»)

“ By convex duality (see right figure)

® Q. How to design a sparse inverse link?




ldea | g-exponential functions -

® g-exponential

max{0,1 + (1 —g)x}"1=9 if0<g< 1
exp(x) tg=1

exp q(x) =

“ Used In Tsallis statistics, robust Bayesian inference, etc.

® Proposed: replace Gibbs kernel with g-exponential distributions

qg=0.0
qg=0.25

D;+a;+p
A

D;+a+p .
After: I, =|exp, | | — p (support is subset of R, )

I

Before: I1.. = exp( ) (support is R.) 1.09\
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Proposed | Regularizer based on g-exponential functions

® Derive primal regularizer from g-exp

P Entropy (1) )
& gl meeee
Q(n) = ——(xlog,(x) — 7) —_(zlog,(n) — ) dual -==-% Cumulant £2%()
D — q 9 2—gq q

< A regularizer strength

< g: control support of kernel V. vV,
® Solve dual optimization : :

v v

Inverse link

sup —(a,a) —(b,f) — z LQ*( B Dij — _ﬂj)
T Link VQ(r) rrinverse tE g ax ) = exp (n/4)
q

a feR”

® Obtain primal solution via inverse link

D . +a+p.
I l ]
Hij = exp, ( Z )




Convergence analysis P

® Suppose dual optimization sup —{(a,a) — (b, ) — ZQ*( — Dij—ai—ﬁj) via BFGS

a,ﬂEIR” i,

Theorem. Under some conditions, the gradient at the point obtained by K-th iteration of BFGS is

Crtd
\/ nT K
A

where the rate satisfies 0 < r < 1 and z 1s a constant in (0,1).

upper-bounded by

® Implication: larger ¢ I1s benefticial In terms of convergence




Experiments | Sparsity of transport matrices 0

® Solution becomes closer to LP solution as g — O

Sinkhorn (g=1)

LP solution ., ~ g=0 (2-norm) _

® Quantitative results
“ g = 1: fully dense (sparsity = 0)

“ g < |:far more sparse than g = | (often sparsity > 0.0)




Experiments | Runtime comparison Y

® Smaller g often requires more runtime

% Irade-off between sparsity and runtime
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Comparison of g-entropy and Tsallis entropy -

® Primal Q(x) < dual > [ QXa)
inf (D, II) + Q(I1..
cU(ab) (D, 11 2 (1) T Vi !
l,] v v
® g-entropy VQ(z) < inverse-»  VQ*(x)
A Inverse link
Q(]Z') — 2 — q (71' lqu(ﬂ) . 71_) —_— VQ*(”) — equ(;/]/ﬂ) ............ 12 .......... i,

(Plotted for g=0.5)
“ Inverse link Is finitely supported for g < |

® [sallis entropy

Inverse link ql/(l—Q)
T(n) = Az?log (x) —_— VT*@y) =
exp,(—n/4)

“ Inverse link 1s not finitely supported for any g - ;
0.0




Summary o

® \\Vhat we do

“ Propose a new (entropic) regularizer to enhance sparsity of optimal transport solution

Solution of Sinkhorn 0 Proposed
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® Practically: trade-off between sparsity and runtime

® [heoretically: design of a good reqgularizer/entropy/divergence/etc.

< Many machine learning problems have convex duality structures!




