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Short bio | Han Bao / 包  含
つつみ ふくむ

● 2017 April - 2022 March: Graduate student @ The University of Tokyo 
❖ My ex-office was in Science Bldg. #7 (very close from here!) 

● 2022 April -: Project assistant professor @ Kyoto University (Hakubi center) 
● Research field: computer science, machine learning 

❖ Design of robust loss functions 
❖ Theory of representation learning
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Optimal transport in machine learning
●Measure the discrepancy of probability distributions (statistical inference) 

● Compute alignments between objects (for information retrieval)
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●Q. What kind of divergences are preferred? 
●Q. Can we compute accurately and faster? 
●Q. What can it be used for?



今日紹介する研究
B. & Sakaue. 
Sparse Regularized Optimal Transport with Deformed q-Entropy. Entropy, 2022.

https://www.mdpi.com/journal/entropy


Summary in one page
●What we do 

❖ Propose a new (entropic) regularizer to enhance sparsity of optimal transport solution 

 

●What’s interesting from practical viewpoint 
❖ Controllable trade-off between sparsity and computational time 

●What’s interesting from theoretical viewpoint 
❖ Connection to convex duality and statistical mechanics via Fenchel-Legendre transform

Solution of Sinkhorn Proposed
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Introduction | Optimal transport
●Goal: to find an optimal way to transport goods from sources to targets 

● LP formulation (Kantorovich’s relaxation) 

   where   

● Issue:  time complexity 

inf
Π∈U(a,b)

⟨D, Π⟩ U(μ, ν) = {Π ∈ ℝn×n Π1 = a, Π⊤1 = b}

O(n3 log n)
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produce a1

produce a2

produce a3

consume b1

consume b2

consume b3

？

transport all goods 
from sources

satisfy demand constraints 
of targets: cost between (i, j)Dij



Introduction | Regularized optimal transport
●Motivation: to accelerate optimization (by using convex optimization) 
● Primal formulation [Cuturi, 2013] 

     where    (negative Shannon entropy) 

❖ Sinkhorn algorithm solves the primal by block coordinate descent with  time  

● Issue: the regularized solution deviate from the original solution  
❖ In particular: “sparsity” is lost

inf
Π∈U(a,b)

⟨D, Π⟩ + λ∑
i,j

H(Πij) H(π) = π log π − π

O(n2)
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Solution of SinkhornLP solution

Cuturi, M. (NeurIPS2013). Sinkhorn distances: Lightspeed computation of optimal transport.



Introduction | Sparsity of transport matrix
● Application of optimal transport: alignment 
● Example: matching two different sentence pairs [Swanson et al., 2020] 
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Sparse alignmentDense alignment

Sparse alignment is more salient to extract meaningful matches

Swanson, K., Yu, L., & Lei, T. (ACL2020). Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport.



Motivation | New regularizer to balance sparsity/runtime 9

Solution of SinkhornLP solution

inf
Π∈U(a,b)

⟨D, Π⟩ inf
Π∈U(a,b)

⟨D, Π⟩ inf
Π∈U(a,b)

⟨D, Π⟩ + λ∑
i,j

H(Πij)

？
Sparse solution

Cubic time

Quadratic time

Dense solution

+∑
i,j

Ω(Πij)



Formulation | Regularized OT & dual
● Regularized OT (primal) 

  for a convex regularizer  

● Regularized OT (dual) 

  where  is Fenchel-Legendre transform 

❖ By Lagrangian ( : multipliers) & strong duality 

❖ Note: dual is unconstrained 

● Primal-dual correspondence (inverse link) 

  for all i, j

inf
Π∈U(a,b)

⟨D, Π⟩ + ∑
i,j

Ω(Πij) Ω : ℝ → ℝ

sup
α,β∈ℝn

− ⟨a, α⟩ − ⟨b, β⟩ − ∑
i,j

Ω⋆( − Dij − αi − βj) Ω⋆

α, β

Πij = ∇Ω⋆( − Dij − αi − βj)
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⇒ Primal transport plan  can be obtained from dual variables Π α, β

Fenchel−Legendre transform


Ω⋆(η) = sup
π∈dom(Ω)

⟨π, η⟩ − Ω(π)



Examples
● (Negative) Shannon entropy 

❖ Regularizer  

❖ Inverse link  

● 2-norm 

❖ Regularizer  

❖ Inverse link  

● Primal-dual correspondence 

Ω(π) = λ(π log π − π)

∇Ω⋆(η) = exp(η/λ)

Ω(π) = λ
2 π2

∇Ω⋆(η) = 1
λ max{0,η}

Πij = ∇Ω⋆( − Dij − αi − βj)
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Gibbs kernel

Πij = exp (−
Dij + αi + βj

λ )

Dense solution

Energy 
(= cost + multipliers)

Temperature 
(= reg. strength)



Idea | Regularizer from alternative (inverse) link function
● Instead of a “dense” inverse link … 

 

● Design a “sparse” inverse link 

 
● Then, recover an entropy-like function 

❖ By convex duality (see right figure) 

● Q. How to design a sparse inverse link?

Πij = exp (−
Dij + αi + βj

λ )

Πij = exp (−
Dij + αi + βj

λ )？
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Link ∇Ω(π) Inverse link ∇Ω⋆(η)

Entropy Ω(π) Cumulant Ω⋆(η)

inverse

∇π ∇η

dual

(Danskin’s Theorem)



Idea | q-exponential functions
● q-exponential 

 

❖ Used in Tsallis statistics, robust Bayesian inference, etc. 

● Proposed: replace Gibbs kernel with q-exponential distributions 

Before:     (support is ) 

After:     (support is subset of )

expq(x) := {max{0,1 + (1 − q)x}1/(1−q) if 0 ≤ q < 1
exp(x) if q = 1

Πij = exp (−
Dij + αi + βj

λ ) ℝ≥0

Πij = expq (−
Dij + αi + βj

λ ) ℝ≥0
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Proposed | Regularizer based on q-exponential functions
●Derive primal regularizer from q-exp 

 

❖ : regularizer strength 

❖ : control support of kernel  

● Solve dual optimization 

 

● Obtain primal solution via inverse link 

Ω(π) =
λ

2 − q
(π logq(π) − π)

λ

q

sup
α,β∈ℝn

− ⟨a, α⟩ − ⟨b, β⟩ − ∑
i,j

Ω⋆( − Dij − αi − βj)

Πij = expq (−
Dij + αi + βj

λ )
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Link ∇Ω(π)
Inverse link


∇Ω⋆(η) = expq(η/λ)

Entropy 
Ω(π)
λ

2 − q (π logq(π) − π) Cumulant Ω⋆(η)

inverse

∇π ∇η

dual



Convergence analysis
● Suppose dual optimization   via BFGS 

● Implication: larger  is beneficial in terms of convergence

sup
α,β∈ℝn

− ⟨a, α⟩ − ⟨b, β⟩ − ∑
i,j

Ω⋆( − Dij − αi − βj)

q
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Theorem. Under some conditions, the gradient at the point obtained by -th iteration of BFGS is 
upper-bounded by 

, 

where the rate satisfies  and  is a constant in .

K

Cnτq

λ
rK

0 < r < 1 τ (0,1)



Experiments | Sparsity of transport matrices
● Solution becomes closer to LP solution as q → 0 

● Quantitative results 
❖ q = 1: fully dense (sparsity = 0) 
❖ q < 1: far more sparse than q = 1 (often sparsity > 0.6)
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Sinkhorn (q=1)LP solution q=0 (2-norm) q=0.5



Experiments | Runtime comparison
● Smaller q often requires more runtime 

❖ Trade-off between sparsity and runtime
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Smaller q

M
ore runtim

e

Dataset size = 100 Dataset size = 300



Comparison of q-entropy and Tsallis entropy
● Primal 

 

●q-entropy 

 

❖ Inverse link is finitely supported for q < 1 
●Tsallis entropy 

 

❖ Inverse link is not finitely supported for any q

inf
Π∈U(a,b)

⟨D, Π⟩ + ∑
i,j

Ω(Πij)

Ω(π) =
λ

2 − q
(π logq(π) − π)

T(π) = λπq logq(π)

18

∇Ω⋆(η) = expq(η/λ)

∇T⋆(η) =
q1/(1−q)

expq(−η/λ)

Inverse link

Inverse link

∇Ω(π) ∇Ω⋆(η)

Ω(π) Ω⋆(η)

inverse

∇π ∇η

dual

(Plotted for q=0.5)



Summary
●What we do 

❖ Propose a new (entropic) regularizer to enhance sparsity of optimal transport solution 

 

● Practically: trade-off between sparsity and runtime 
● Theoretically: design of a good regularizer/entropy/divergence/etc. 

❖ Many machine learning problems have convex duality structures!

Solution of Sinkhorn Proposed
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